# Sovereign Default and Capital Controls

Robert A. McDowall

New York University

April 19, 2018

### Motivation

- ► Sovereign debt is subject to lack of commitment, and there are greater incentives to default on external public debts
- ► Emergence of domestically & externally held public debts introduces new dimension in repayment decisions
- Recent literature explores domicile/default relationship

### Question

What does lack of commitment to repay imply for optimal capital control policy?

- ▶ The domicile of bondholders matters
- Distinct from conventional capital control theories

New insight Controls as a commitment device

- Optimal controls support equilibrium with foreign lending, mitigate default risk
- Controls employed during bad times

### The Canonical Model

#### Setup

Two period model t = 0, 1. Endowment economy inhabited by a sovereign and foreign lenders.

- Sovereign
  - ▶ Benevolent, must finance some expenditure  $(g_0)$
  - ▶ Chooses how much to borrow from abroad  $(B_f)$
  - ▶ Lacks commitment to repay at t = 1 ( $\delta = 0$  denotes default)
- Exogenous cost of default  $(\phi)$
- Foreign lenders
  - Deep pocketed, risk neutral. Price bonds according to

$$q = \frac{\delta}{R}$$

# The Canonical Model

Planner's Pb.

The period 0 sovereign solves

$$\max\{\mathit{V_{aut}},\mathit{V_{rep}}\}$$

Where

$$V_{aut} = u(y_0 - g_0) + \beta u(y_1)$$
  $V_{rep} = \max_{c_0, c_1, B_f} u(c_0) + \beta u(c_1)$  st.  $c_0 \le y_0 - g_0 + qB_f$   $c_1 \le y_1 - B_f$   $B_f < \phi$ 

### The Canonical Model

Solution

The solution amounts to choosing between the allocations implied by autarchy and repayment.

▶ Under repayment the sovereign borrows  $B_f$  at price  $\frac{1}{R}$  according to

$$u'(c_0) = \beta R u'(c_1) + \mu R$$

Where  $\mu$  is the Lagrange multiplier on the borrowing constraint  $(B_f \leq \phi)$ 

#### Implementing the Optimal Allocation

Implementation naturally yields a role for capital control policy.

Economy inhabited by a sovereign, domestic households, and foreign lenders.

- Sovereign
  - ightharpoonup Benevolent, sets capital control policy ex-ante ( au), lacks commitment to repay.
- Households
  - ▶ Smooth consumption, save in government bonds  $(B_d)$
- Foreign lenders
  - ▶ Deep pocketed, risk neutral, purchase government bonds  $(B_f)$

#### Households

$$V = \max_{c_0, c_1 B_d} u(c_0) + \beta u(c_1)$$

$$st.$$

$$c_0 = y_0 - qB_d - T_0$$

$$c_1 = y_1 + \delta B_d - T_1$$

$$B_d \ge 0$$

#### FOC on interior

$$q = \frac{\beta u'(c_1)}{u'(c_0)}$$

▶ Higher return on public debt  $(\downarrow q)$  increases household savings

#### Foreign Lenders

Risk neutral, deep pockets, access to risk-free asset (return R). Break even constraint

$$\frac{q(1+\tau)}{\delta} - \frac{1}{R} = 0$$

$$q = \frac{\delta}{R(1+\tau)}$$
 if  $B_f > 0$ 

ightharpoonup Capital controls ( au) produce wedge between return on debt for foreign lenders and domestic households

#### Sovereign

- Must finance expenditure g<sub>0</sub> at time 0
- ▶ Issues bonds  $(B = B_d + B_f)$  and sets capital controls  $(\tau)$
- ▶ Subject to HH implementability condition  $(q = \frac{\beta u'(c_1)}{u'(c_0)})$  and pricing equation

#### Faces budget constraints

$$(1 - \delta)T_0 = g_0 - q[B + \tau B_f]$$
$$T_1 = \delta B + (1 - \delta)\phi$$

Where  $\phi$  denotes exogenous cost of default.

▶ Sovereign wants to smooth g<sub>0</sub>

#### Ramsey Problem, Primal Approach

$$V_{rep} = \max_{c_0, c_1, B_f} u(c_0) + \beta u(c_1)$$
 $st.$ 
 $c_0 \le y_0 - g_0 + \frac{B_f}{R}$  (1)
 $c_1 \le y_1 - B_f$  (2)
 $B_f \le \phi$ 

▶ (1) and (2) collapse to the economy-wide constraints at risk-neutral prices.

#### Implementation

First order condition

$$u'(c_0) = \beta R u'(c_1) + \mu R.$$

Implementing the optimal allocation yields a natural role for capital controls.

$$au = egin{cases} rac{u'(c_0)}{eta R u'(c_1)} - 1 & ext{ if } \mu > 0 \ 0 & ext{ Otherwise} \end{cases}$$

- ▶ Implies an optimal capital control that is countercyclical.
- Imposition of controls displays threshold behavior in initial domestic disposable income

Numerical

Table: Parameterization

| $\beta$ | R    | $\phi$ | <i>y</i> 0 | <i>y</i> 1 |
|---------|------|--------|------------|------------|
| 0.96    | 1.04 | 0.12   | 1.05       | 1.0        |

Table: Comparison for  $g_0 = .35$ 

|                  | Welfare | Internal<br>Total debt | au     |
|------------------|---------|------------------------|--------|
| Commitment       | 1       | 0.5789                 | 0      |
| No Commitment    | 0.9687  | 1                      | 0      |
| Capital Controls | 0.9985  | 0.7035                 | 0.1666 |

#### Controls to support markets



Figure: Welfare Comparison

#### Controls in bad times



Figure: Countercyclical Controls

### Conclusion

- A novel rationale for countercyclical capital control policy
- Controls support foreign lending in an environment without commitment
- Uncertainty introduces further tradeoff
  - mitigation of default risk & increased bond revenue vs.
     distorting consumption/savings & the option value of default