Consumption Behavior Across the Distribution of Liquid Assets

Robert A. McDowall

New York University

October 25, 2019

- ▶ Consumption responses to income major source of concern.
 - Understanding dynamics of individual household behavior.
 - ▶ At the core of any macro model.

- ▶ Consumption responses to income major source of concern.
 - Understanding dynamics of individual household behavior.
 - ▶ At the core of any macro model.
- ► Empirical literature (Hall (1978), Zeldes (1989), Johnson et. al (2006), Parker et. al (2013))
 - Excess sensitivity: consumption responses at receipt of predictable income.

- ▶ Consumption responses to income major source of concern.
 - Understanding dynamics of individual household behavior.
 - ▶ At the core of any macro model.
- ▶ Empirical literature (Hall (1978), Zeldes (1989), Johnson et. al (2006), Parker et. al (2013))
 - Excess sensitivity: consumption responses at receipt of predictable income.
- ► Consumption models (Friedman (1957), Caroll (1997), Mankiw (2000), Kaplan and Violante (2014))
 - Focus on role of liquidity constraints.

- ▶ Consumption responses to income major source of concern.
 - Understanding dynamics of individual household behavior.
 - ▶ At the core of any macro model.
- ► Empirical literature (Hall (1978), Zeldes (1989), Johnson et. al (2006), Parker et. al (2013))
 - Excess sensitivity: consumption responses at receipt of predictable income.
- ► Consumption models (Friedman (1957), Caroll (1997), Mankiw (2000), Kaplan and Violante (2014))
 - Focus on role of liquidity constraints.

This Paper:

- ▶ Document relationship between liquidity and consumption responses.
 - ▶ Cannot fully account for consumption responses to predictable income.
- Relevant for policy analysis

This Paper

- 1. Document relationship in micro-data between liquidity and consumption responses.
 - ▶ Magnitude: significant responses amongst households with high liquidity.
 - ► Timing: highly front-loaded to receipt.

This Paper

- 1. Document relationship in micro-data between liquidity and consumption responses.
 - Magnitude: significant responses amongst households with high liquidity.
 - Timing: highly front-loaded to receipt.
- 2. Propose departure from standard model.
 - Households averse to dissaving (mental accounts).
 - ▶ Nests standard buffer-stock and hand-to-mouth agents as limiting cases.
 - ▶ Data consistent with intermediate case, moderate level of dissaving aversion.

This Paper

- 1. Document relationship in micro-data between liquidity and consumption responses.
 - Magnitude: significant responses amongst households with high liquidity.
 - ► Timing: highly front-loaded to receipt.
- 2. Propose departure from standard model.
 - Households averse to dissaving (mental accounts).
 - ▶ Nests standard buffer-stock and hand-to-mouth agents as limiting cases.
 - ▶ Data consistent with intermediate case, moderate level of dissaving aversion.
- 3. Re-evaluate fiscal stimulus policies, compare to standard buffer-stock model
 - \blacktriangleright Redistributive stimulus to liquidity constrained households, $\approx 50\%$ less effective.

Contribution

- ▶ Consumption Responses: Hall (1978), Zeldes (1989), Campbell and Mankiw (1990), Shapiro and Slemrod (2003), Johnson et. al (2006), Parker et. al (2013), Keung (2018), Ganong and Noel (2019).
 - Document liquidity/excess sensitivity relationship in administrative data.
- ▶ Structural Models: Friedman (1957), Caroll (1997), Laibson (1997), Parker and Gourchinas (1999), Attanasio et. al (1999), Mankiw (2000), Cagetti (2003), Gabaix (2011), Kaplan and Violante (2014).
 - ▶ Jointly rationalize timing & magnitude of consumption responses in cross-section.
- ▶ Mental Accounts: Thaler (1985), Shefrin and Thaler (1988), Farhi and Gabaix (2018), Hastings and Shapiro (2012), Hastings and Shapiro (2018).
 - Evaluate class of models in consumption micro-data.

Data & Empirical Results

Data

Goal: Document relationship in micro-data between liquidity and excess sensitivity.

Administrative transaction & account-level dataset from large U.S. financial institution.

- ▶ 17.2 million U.S. households from 2012 to 2019.
- ► Includes:
 - **Expenditures**: deposit & credit transactions, associated to time of purchase.
 - ▶ **Income**: categorized by source.
 - Balances: checking, savings, credit card, non-transaction accounts.
- Aggregate accounts to primary account holder.
 - Working age households (24 to 64).
 - ▶ Active accounts (5+ deposit account outflows each month).

Data, External Validation

Empirical Strategy

Estimate consumption responses to income at daily frequency. Standard distributed lags model:

$$c_{i,t} = \alpha_i + \lambda_t + \sum_{j=t-1}^{t+L} \delta_j \cdot \textit{Income}_{i,j} + \epsilon_{i,t}$$

- ▶ Household (α_i) and time (λ_t) fixed effects (day of week, day of month, year)
- ▶ *Income* ∈ {Tax Refunds, Bonuses, Paychecks}
- ▶ $Income_{i,j}$: magnitude of inflow received by household i at lead/lag j days

Summary Statistics, Refund Recipients

Summary Statistics, Bonus Recipients

Refund Arrival

Bonus Arrival

Non-Durable Consumption Responses, Tax Refunds

n = 882,360,496

Balance Sheet Responses, Tax Refunds

Non-Durable Consumption Responses, Bonus Checks

n = 71,223,781

Non-Durable Consumption, Bonus Checks

Average bonus check: \$11,445

Summary Statistics Non-Durable Measure

Non-Durable Consumption Responses, Tax Refunds

Cross-Section

Decile	1	2	3	4	5	6	7	8	9	10
Liquid Assets Income	0.21	0.36	0.49	0.64	0.80	1.0	1.35	1.91	3.09	5.11
Total Income	4348	4860	5163	5420	5680	5909	6026	6088	6017	5840
Tax Refund	2049	1999	2020	2029	2096	2132	2161	2154	2110	2097

Distributions

Expenditure Baskets

Non-Durable Consumption Responses, Tax Refunds

Cross-Section

Consumption Responses

Robustness

Results are robust to measures of income, expenditure, and liquidity.

- ▶ Income: form (Regular Paychecks) and Bonus Checks) and Magnitude.
- ► Expenditure: Categories (durables, groceries, food services, retail goods).
- ► Liquidity: in Levels of assets, relative to expenditure, Liquid Assets by income.

Consumption Responses

Robustness

Results are robust to measures of income, expenditure, and liquidity.

- ► Income: form (Regular Paychecks and Bonus Checks) and Magnitude.
- ► Expenditure: Categories (durables, groceries, food services, retail goods).
- ► Liquidity: in Levels of assets, relative to expenditure, Liquid Assets by income.

Additionally, robust to sampling and income events.

- ► Hold in Cross-Sections of age, levels of income & income volatility
- ► Responses of highly liquid not driven by self-selection. (Self-Selection)
- ▶ Persist when one large inflow comes shortly after another (Two Refunds).
- Are restricted to receipt as opposed to the date of Tax Filing.

Model of Mental Accounts

Model of Mental Accounts

- ► Mental Accounts:
 - ► Thaler (1985), Farhi and Gabaix (2018).
 - ▶ Break fungibility of otherwise interchangeable resources.

Model of Mental Accounts

- ► Mental Accounts:
 - ► Thaler (1985), Farhi and Gabaix (2018).
 - Break fungibility of otherwise interchangeable resources.
- Households behave as if self-constrained.
 - ▶ Current income (y_t) and current assets (a_t) considered separately.
 - Households averse to spending out of savings.

$$\nu(c) \equiv u(c) + \psi \cdot d(a', a^d)$$

- $lacktriangleright a^d$ some default level of savings, $\psi \in [0,1]$ dissaving aversion parameter
- Savings deviation function:

$$d(a', a^d) \begin{cases} = 0 & \text{if } a' \ge a^d \\ < 0 & \text{if } a' < a^d \end{cases}$$

▶ Allocation at default: $c^d = y + a(1 + r) - a^d$

Model of Mental Accounts Utility

$$\nu(c) \equiv u(c) + \psi \cdot d(a', a^d)$$

- ightharpoonup a some default level of savings, $\psi \in [0,1]$ dissaving aversion parameter
- Savings deviation function:

$$d(a', a^d) \begin{cases} = 0 & \text{if } a' \ge a^d \\ < 0 & \text{if } a' < a^d \end{cases}$$

▶ Allocation at default: $c^d = y + a(1+r) - a^d$

Impose following structure:

- 1. Default guided by current level of savings: $a^d = a(1+r)$
- 2. Functional form:

$$d(a', a^d) = -[u(c) - u(c^d)] \cdot \mathbb{I}_{a' < a^d}$$

Utility

Mental Accounts, Utility Function

- Consumption
- $\psi = 0$: $\nu(c) = u(c)$, agents are **buffer-stock**.
- $\psi = 1$: $\nu'(c) = 0$ when c > y, agents are hand-to-mouth.
- $\psi \in (0,1)$: agents are **dissaving averse**.

Perfect Foresight

▶ Agent lives T months, $a_0 = 0$, period 0 income only $(y_0 > 0, y_t = 0 \ \forall \ t > 0)$.

$$\max \sum_{t=0}^T \beta^t \left[\frac{c_t^{1-\gamma}}{1-\gamma} + \frac{\psi}{t} \cdot d(a_{t+1}, a_t(1+r)) \right] \qquad \text{st.} \quad \frac{c_t + a_{t+1} \leq y_t + a_t(1+r)}{a_{T+1} \geq 0}$$

Perfect Foresight

▶ Agent lives T months, $a_0 = 0$, period 0 income only $(y_0 > 0, y_t = 0 \ \forall \ t > 0)$.

$$\max \sum_{t=0}^T \beta^t \left[\frac{c_t^{1-\gamma}}{1-\gamma} + \frac{\psi}{t} \cdot d(a_{t+1}, a_t(1+r)) \right] \qquad \text{st.} \quad \frac{c_t + a_{t+1} \leq y_t + a_t(1+r)}{a_{T+1} \geq 0}$$

▶ **Solution:** period 0 response

$$\frac{\partial c_0}{\partial y_0} = \left(1 + \left(1 - \frac{\psi}{v}\right)^{\frac{1}{\gamma}} \cdot \left[\frac{\beta^{\frac{1}{\gamma}}(1+r)^{\frac{1-\gamma}{\gamma}} - (1+r)^{-T}(\beta(1+r))^{\frac{T}{\gamma}}}{1 - \beta^{\frac{1}{\gamma}}(1+r)^{\frac{1-\gamma}{\gamma}}}\right]\right)^{-1}$$

and
$$\frac{\partial c_{t+1}}{\partial y_0} = \frac{\partial c_t}{\partial y_0} [\beta(1+r)]^{\frac{1}{\gamma}} \ \forall \ t > 0.$$

Perfect Foresight

▶ Agent lives T months, $a_0 = 0$, period 0 income only $(y_0 > 0, y_t = 0 \ \forall \ t > 0)$.

$$\max \sum_{t=0}^T \beta^t \left[\frac{c_t^{1-\gamma}}{1-\gamma} + \frac{\psi}{t} \cdot d(a_{t+1}, a_t(1+r)) \right] \qquad \text{st.} \quad \frac{c_t + a_{t+1} \leq y_t + a_t(1+r)}{a_{T+1} \geq 0}$$

▶ **Solution:** period 0 response

$$\begin{split} \frac{\partial c_0}{\partial y_0} &= \left(1 + \left(1 - \psi\right)^{\frac{1}{\gamma}} \cdot \left[\frac{\beta^{\frac{1}{\gamma}} (1 + r)^{\frac{1 - \gamma}{\gamma}} - (1 + r)^{-T} (\beta(1 + r))^{\frac{T}{\gamma}}}{1 - \beta^{\frac{1}{\gamma}} (1 + r)^{\frac{1 - \gamma}{\gamma}}}\right]\right)^{-1} \\ \text{and} \ \frac{\partial c_{t+1}}{\partial y_0} &= \frac{\partial c_t}{\partial y_0} [\beta(1 + r)]^{\frac{1}{\gamma}} \ \forall \ t > 0. \end{split}$$

Cases:

- $\psi=1$: $\frac{\partial c_0}{\partial y_0}=1$ (hand-to-mouth)
- $\psi = 0$: $\frac{\partial c_0}{\partial y_0} \to 0$, (permanent income).

Structural Estimation, Model

Discipline preference parameters with data by performing structural estimation.

$$egin{aligned} v_t(y_t, a_t) &= \max_{c_t} \left\{ rac{c^{1-\gamma}}{1-\gamma} + \psi \cdot d(a', a(1+r)) + eta \cdot \mathbb{E}_t[v_{t+1}(y_{t+1}, a_{t+1})]
ight\} \ & ext{st.} \ c_t + a_{t+1} \leq y_t + a_t(1+r) \ a_{t+1} \geq \underline{a} \ v_{\mathcal{T}+1}(a_{\mathcal{T}+1}) = \kappa rac{(a_{\mathcal{T}+1})^{\gamma}}{1-\gamma} \end{aligned}$$

- ▶ Income follows AR(1), unemployment risk, deterministic growth profile
- Monthly frequency, 40 years of working life

Structural Estimation, Parameters

	Parameter	Symbol	Value	Source	
Preferences	Time Preference	β	0.9344	SMM	
	Risk Aversion	γ	2.48	SMM	
	Bequest Motive	κ	239	SMM	
	Dissaving Aversion	$oldsymbol{\psi}$	0.346	SMM	
Primitives	Rate of Return	r	0.78%	60-Month CD	
	Initial Endowment	a_0	-	SCF	
Income	UI Replacement	u _i	0.463	OUI	
	Job-Finding Probability	p_e	0.48	CPS	
	Separation Probability	p_u	0.011	CPS	
	Stimulus Payment	T	0.6966	BANK	
	Deterministic Income	$\{\Gamma_t\}_{t=0}^T$		First Stage	
	Income Persistence	ρ	0.8962	First Stage	
	Income Volatility	σ_ϵ	0.073	First Stage	

Structural Estimation, Moments

- **Standard Buffer-Stock** $(\{\beta, \gamma, \kappa\})$: match life-cycle asset accumulation.
- ▶ Here $(\{\beta, \gamma, \kappa, \psi\})$: jointly with cross-section of consumption responses.

Estimation Results, Model Comparison

Full Results

B-S Cons.

Contours (M-A

Contours (B-S)

sset Dist.

《中医《圖》《意》《意》。 意一

Estimation Results, Model Comparison

Full Results

B-S Cons.

Contours (M-A

Contours (B-S)

Asset Dist.

Vary

◆ロト ◆御 ト ◆ き ト ◆ き ・ り ♀

Fiscal Stimulus

Fiscal Stimulus

Three Experiments

- ► Small open economy, monthly frequency
- ▶ Preference parameters from structural estimation
- ► Transfer payments to working age agents

Three Experiments

- ► Small open economy, monthly frequency
- ▶ Preference parameters from structural estimation
- ► Transfer payments to working age agents

Experiment 1: Lump sum transfer to all households

- ightharpoonup Announcement at time t-1.
- ▶ All households receive two weeks of income at time t ($T_t^i = 0.5 \ \forall i$)

Experiment 1: Lump Sum Stimulus

Cumulative	Mental Accts.	Buffer-Stock
Announcement	0.009	0.014
Receipt	0.226	0.052
One Quarter	0.24	0.094

Three Experiments

Experiment 2: Redistributive taxation

- ightharpoonup Announcement at time t-1.
- ▶ Balanced budget redistribution ($\sum_{q=1}^{5} \int_{i} T_{t}^{i,q} \cdot \Gamma_{t}^{i} di = 0$) across agents (i) and quintiles of liquid balances (q)
 - Lump sum transfer from fifth liquidity quintile to first of \$2500.
 - ▶ Such that $T_t^{i,1} \approx 0.35 \ \forall i$ in quintile 1.

Experiment 2: Redistributive Taxation

▶ Stimulus 53% less effective over 2 quarters under mental accounts

Three Experiments

Experiment 3: Targeted Stimulus Policies

Three Experiments

Experiment 3: Targeted Stimulus Policies

- 1. Un-targeted: \$100 to all households
 - ▶ ie. Bush tax rebates of 2001 and 2008

Three Experiments

Experiment 3: Targeted Stimulus Policies

- 1. Un-targeted: \$100 to all households
 - ▶ ie. Bush tax rebates of 2001 and 2008
- 2. Income-targeted: \$500 to lowest 20% of income at announcement
 - ▶ ie. unemployment insurance, workers' compensation

Three Experiments

Experiment 3: Targeted Stimulus Policies

- 1. Un-targeted: \$100 to all households
 - ▶ ie. Bush tax rebates of 2001 and 2008
- 2. Income-targeted: \$500 to lowest 20% of income at announcement
 - ▶ ie. unemployment insurance, workers' compensation
- 3. Asset-targeted: \$500 to lowest 20% of liquid assets
 - ie. means-tested programs, such as SNAP or TANF

Experiment 2: Redistributive Taxation

- ▶ Buffer-stock: relative to un-targeted, income-target +600% & asset-target +800%
- ► Mental Acct.: income-target +47% and asset-target +33%

Conclusion

- 1. Document in micro-data:
 - Significant consumption responses amongst households with high levels of liquidity.
 - Responses that are highly front-loaded to receipt & decline moderately in levels of liquidity.
- 2. Propose departure from standard model in which households averse to dissaving.
 - Structural estimation of preference parameters.
 - Captures salient features of data.
- 3. Re-evaluate impact of stimulus policies.
 - ▶ Redistributive stimulus 53% less effective over 2 quarters under mental accounts

Overall Summary Statistics

Table: Summary Statistics

		Mean	25th	Median	75th
Demographics	Age	42.2	32	41	52
	Account Users	1.4	1	1	2
Income	Total Income	5935	2273	3923	6782
	Labor Income	4022	1835	2957	4754
Balances	Total Liquid	8673	473	1835	6442
	Checking	4955	341	1255	3691
	Savings	2302	0	0	263
	Revolving Credit	920	0	0	0

Expenditure Basket

Figure: Monthly Household Expenditures

■ Data

External Benchmarking

	Ar	nnual Inc	ome	Checking			Liquid Balances		
Source	25th	Median	75th	25th	Median	75th	25th	Median	75th
SCF	29863	50569	85632	300	1700	5600	800	3800	16000
SCPC	-	-	-	200	1000	3500	-	-	-
BANK	31754	50568	82484	338	1251	3687	459	1796	6182

SCF Post-Tax Adjustment

Table: Average Taxes by Bracket, 2016. Source: CBO

Bracket	Q1	Q2	Q3	Q4	Q5	99th
Bounds	<32.5	32.5-54.8	54.8-81.8	81.8-126.1	126.1-546.8	>546.8
Average Tax Rate	0.017	0.094	0.139	0.179	0.265	0.333

Source	25th	Median	75th
SCF	30,379	58,733	104,302
SCF, Adjusted	29,863	50,569	85,632
BANK	31,754	50,568	82,484

◆ External Benchmarking

Data, External Validation

Table: Expenditure Comparison, Monthly Averages, 2016

Source	Expenditure	Non-Durables	Durables	Services	Food Services	Groceries
CEX	4775.92	980.92	633.67	2386.83	337.42	303.17
BANK	5347.84	1059.18	168.40	1252.30	306.41	220.49

Table: Income Comparison, Monthly Averages, 2016

Source	Monthly Income	Federal Tax Refund	State/Local Tax Refund
CEX	5347.92	-	-
IRS	-	2860	1622
BANK	5949.35	2844.61	1218.37

Account Frequencies

Table: Number of Accounts, Frequencies, 2016

	Checking				Savings		
Source	1	2	3+	0	1	2	3+
SCPC	0.665	0.247	0.087	0.208	0.471	0.205	0.116
BANK	0.879	0.107	0.014	0.61	0.345	0.039	0.012

◆ External Benchmarking

Overall Summary Statistics

Table: Summary Statistics, Tax Refund Recipients

	Mean	25th	Median	75th
Liquid Balances	7279	581	1828	5699
Income	5259	2425	3868	6245
Tax Refund	2072	360	1120	2993

◆ Empirical Strategy

Non-Durable Responses

Overall Summary Statistics

Table: Summary Statistics, Bonus Check Recipients

	Mean	25th	Median	75th
Liquid Balances	12690	2024	4930	13609
Income	8246	4207	6182	9396
Bonus Check	11445	3290	5733	10802
Tax Refund	2818	582	1170	3906

◆ Empirical Strategy
 ◆ Non-Durable Responses

Refund Arrival Variation

■ Empirical Strategy

Bonus Arrival Variation

■ Empirical Strategy

Total Expenditure Response

Figure: Total Expenditure Response

Non-Durable Measure Construction

Measure includes

- Non-durable goods: groceries, entertainment, fuel, discount & drug stores, direct market catalogs
- 2. **Services**: utilities, telecommunications, insurance, health expenses, bills, food services, travel services, other personal and professional services.
- 3. **Imputation procedure**: assign cash, unclassified checks, payments to unobserved credit card accounts Imputation Procedure

◆ Non-Durable Response

Imputation Procedure

Denote total expenditure $(e^{i,q})$, observable non-durables $(e^i_{\mathcal{ND}})$, unclassified $(e^i_{\mathcal{C}})$.

- Mean observable expenditure on non-durables for households in population q, $\xi^q \equiv \frac{1}{N} \sum_{i=1}^N \frac{e_{\mathcal{ND}}^{i,q}}{e^{i,q}-e^{i,q}}$,
- Imputed non-durable consumption responses for population q at lag j are then obtained via $\delta_{t-l}^{\mathcal{ND}_{\mathcal{I}},q} = \delta_{j}^{\mathcal{ND},q} + \xi^{q} \cdot \delta_{j}^{\mathcal{C},q}$, where δ_{j} from regression
- ightharpoonup ξ taken from the month prior to refund receipt

Procedure Assumes

- 1. Proportion of unclassified towards non-durables same as that of identifiable portion of total expenditure
 - ▶ SCPC (2018): 40% of cash and paper check transactions & 36% of payment card (credit, debit, pre-paid) transactions represented purchases of retail goods.
- 2. Excess response of these categories at income receipt scales proportionally
 - ► Shifts in the composition of expenditure around refund receipt are small ▶ Basket

Expenditure Basket

Figure: Weekly Consumption Basket Around Tax Refund

◆ Balance Sheet Response ◆ Non-Durable Response

Durable Consumption Responses, Tax Refunds

Non-Durable Consumption Responses

Distributions by Decile

Non-Durable Consumption Responses

Baskets by Decile

Period Month Before Week Before Week Of Month After

Period Month Before Week Before Week Of Month After

Non-Durable Consumption Responses, Bonuses

Cross-Section

Quintile	1	2	3	4	5
Liquid Assets Total Income, Lower Bound	0	0.29	0.55	1	2.35
Total Income	7023	7738	8260	8765	8734
Bonus	6770	8542	10584	12953	15952

Total Expenditure Responses

Cross-Section

Marginal Propensities to Spend out of Tax Refund

- 1 Month - 2 Months - 3 Months - Anticipatory Spend

→ Non-Durable Responses

Non-Durable Expenditures, Pre-Imputation

Cross-Section

Cross-Sectional MPCs, Non-Durables (Expanded Measure)

Non-Durable Consumption Responses

Dynamics

Regular Paychecks

Figure: Consumption Responses Around Regular Paychecks

Robustness Bonus Checks

Total Expenditure

Figure: Total Expenditure Response to Bonus Checks

Magnitude

Figure: Expenditure Responses of the Non-Hand-to-Mouth Across Refund Size Relative to Income

Categories

Grocery Consumption

Categories

→ Robustness

Two Refunds

Figure: Tax Refund Responses, Multiple Refunds

Tax Filing

Figure: Expenditure Response at Tax Filing

Tax Filing

Figure: Expenditure Response, Multiple Refunds and Filing, Highest $\frac{Liquid\ Asset}{Income}$ Quintile

→ Robustness

Cross-Sections

Marginal Propensities to Spend out of Tax Refund

Cross-Sections, Summary

Table: MPC Correlates, Averages within deciles

Decile	1	2	3	4	5	6	7	8	9	10
Age	25	29	33	37	41	45	49	53	57	62
Income	2534	2675	3026	3450	3949	4543	5307	6356	8020	13725
Liquid Assets	133	378	635	968	1434	2134	3261	5264	9579	33176
Income C.V.	0.08	0.15	0.19	0.22	0.25	0.31	0.39	0.50	0.70	1.25
Daily Logins	0.07	0.23	0.42	0.60	0.77	0.95	1.17	1.45	1.90	3.35

▶ Cross-Sections

→ Robustness

Cross-Sections, Variance Decomposition

	MPC Total	Expenditure	MPC Non-Durables		
	Proportion of Variation	Correlation	Proportion of Variation	Correlation	
Age	0.0053	+	0.0168	+	
Liquid Balance	0.5841	_	0.5006	_	
Liquid Balance, Deviation	0.0008	+	0.0013	+	
Credit Card Balance	0.0317	_	0.0007	+	
Credit Card Bal., Deviation	0.0036	_	0.0012	_	
Total Income	0.1667	_	0.1333	_	
Total Income, Deviation	0.0571	_	0.0515	_	
Account Logins	0.0538	+	0.1399	+	
Account Logins, Deviation	0.0480	+	0.038	+	
Home Owner	0.0487	_	0.1147	_	

Cross-Sections, Variance Decomposition

MPCs obtained non-parametrically

$$MPC_{i,t} = \frac{\Delta c_{i,t}}{\Delta y_{i,t}} = \frac{c_{i,t} - c_{i,t-1}}{Refund_{i,t}}$$

Regression

$$\begin{split} \mathit{MPC}_{it} = \alpha + \gamma_1 \mathit{age}_{i,t} + \gamma_{2a} \mathit{liq_bal}_{i,t} + \gamma_{2b} \overline{\mathit{liq_bal}}_{i,t} + \gamma_{3a} \mathit{credit_bal}_{i,t} + \gamma_{3b} \overline{\mathit{credit_bal}}_{i,t} \\ + \gamma_{4a} \widetilde{\mathit{income}}_{i,t} + \gamma_{4b} \overline{\mathit{income}}_{i,t} + \gamma_{5a} \widetilde{\mathit{logins}}_{i,t} + \gamma_{5b} \overline{\mathit{logins}}_{i,t} \\ + \gamma_6 \mathbb{I}_{\mathit{home},i} + \epsilon_{i,t} \end{split}$$

Use the method of Lindeman, Merenda, and Gold (1980) which derives the variance decomposition from sequential sums of squares averaged over all permutations of the RHS variables. • Cross-Sections Variance Decomposition • Robustness

Income Groups

→ Robustness

Self-Selection

- Exploit panel dimension, within household variation in liquidity across years
- ► Construct monthly non-durable MPCs non-parametrically, ie. $\frac{\Delta e_{i,t}^{\mathcal{ND}}}{Refund_{i,t}}$.
- ightharpoonup Decile households by $\frac{Liquid\ Assets}{Income}$ as in event study

$$\frac{\Delta e_{i,t}^{\mathcal{ND}}}{\textit{Refund}_{i,t}} = \alpha_i + \gamma_t + \sum_{q=2}^{10} \beta_q \frac{\textit{Liquid Assets}}{\textit{Income}}^q_{i,t} + \epsilon_{i,t}$$

► Coefficients of interest: $\{\beta_q\}_{q=2}^{10}$

→ Regression Results

→ Robustness

Self-Selection

Income Groups

Table: Summary Statistics by Income Level

		Median			Mean
	Income LiquidBalance	Income	Liquid Balances	Expenditure	Tax Refund
Low Income	Low	2608	499	2374	1694
(< 40k)	Middle	2769	1564	2603	1673
	High	2827	5059	2769	1634
Middle Income	Low	5650	1546	5238	2344
(40k - 120k)	Middle	5897	4763	5649	2388
	High	5738	13823	5646	2417
High Income	Low	13567	5854	12492	3540
(> 120k)	Middle	13894	14601	13010	3887
	High	13801	35539	13141	4326

→ Robustness

Estimation Objective

▶ Match assets by age group $(\{d_a^{liq}\}_{a=1}^8)$ jointly with cross-section of consumption responses $(\{d_i^{mpc}\}_{i=1}^{10})$.

$$\min_{\boldsymbol{\beta},\boldsymbol{\gamma},\boldsymbol{\psi},\boldsymbol{\kappa}}\Theta\sum_{i}^{N}\omega_{i}^{a}\mid d_{i,a}^{liq}-m_{a}^{liq}(\boldsymbol{\beta},\boldsymbol{\gamma},\boldsymbol{\psi},\boldsymbol{\kappa})\mid+(1-\Theta)\sum_{j}^{10}\mid d_{j}^{mpc}-m_{j}^{mpc}(\boldsymbol{\beta},\boldsymbol{\gamma},\boldsymbol{\psi},\boldsymbol{\kappa})\mid$$

→ Structural Estimation

Life-Cycle Decomposition

Identification

- ▶ Perfect Foresight. Agent lives T = 660 months, $a_0 = 0$, income only in the initial period $(y_0 > 0, y_t = 0 \ \forall \ t > 0)$.
- ▶ Monthly return on savings (1 + r), faces no credit constraints. Solves

$$egin{aligned} \max \sum_{t=0}^{T} eta^t
u(c_t) \ c_t + a_{t+1} & \leq y_t + a_t (1+r) \ a_{T+1} & \geq 0 \end{aligned}$$

▶ Given γ , restrictions imposed by $\frac{\partial c_0}{\partial y_0}$ and $\frac{\partial c_{t+1}}{\partial y_0} / \frac{\partial c_t}{\partial y_0} \ \forall t > 0$ identify β and ψ .

→ Structural Estimation

Identification

Cont.

Period 0 response

$$\frac{\partial c_0}{\partial y_0} = \left(1 + \left(1 - \psi\right)^{\frac{1}{\gamma}} \cdot \left[\frac{\beta^{\frac{1}{\gamma}}(1+r)^{\frac{1-\gamma}{\gamma}} - (1+r)^{-T}(\beta(1+r))^{\frac{T}{\gamma}}}{1 - \beta^{\frac{1}{\gamma}}(1+r)^{\frac{1-\gamma}{\gamma}}}\right]\right)^{-1}$$

And

$$\frac{\partial c_{t+1}}{\partial y_0} = \frac{\partial c_t}{\partial y_0} [\beta(1+r)]^{\frac{1}{\gamma}} \text{ for all } t > 0.$$

◆ Back Continue Structural Estimation

Identification

Cont.

Amongst fifth liquidity quintile $\frac{\partial c_0}{\partial y_0} \approx 0.095$, $\frac{\partial c_4}{\partial y_0} / \frac{\partial c_3}{\partial y_0} \approx 0.986$. Choosing $(1+r) \approx 1$, $\gamma = 1$ (log utility), it follows $\beta = 0.986$ and $\psi = 0.867$.

Figure: Mental Accounts Consumption Response

Parameters

Figure: Deterministic Profiles

Parameters

Figure: Deterministic Component of Income, Monthly Frequency

Estimation Results

Estimation Results, Buffer-Stock Model

Estimation Contours

Figure: Parameter Identification Contours

Estimation Results, Buffer-Stock Model

Estimated to match consumption responses

Estimation Contours, Baseline Model

Figure: Parameter Identification Contours

Asset Distributions

Consumption Responses

Other Models

- ▶ **Buffer-stock**, **Two assets**¹: consumption responses display moderate decline in levels of liquidity, significant amongst those with high liquidity, front-loaded to receipt.
- ▶ Rational inattention²: consumption responses in data immediate and short-lived, no systematic innovation at the date of filing.
- ► **Temptation**³, **Reference-dependence**⁴: consumption responses delayed until receipt, even for households with substantial liquid wealth, access to credit cards.

¹ Parker and Gourchinas (1999), Kaplan & Violante (2011)

² Reis (2006), Gabaix (2011)

³ Laibson (1997), Gul & Pesendorfer (2001)

⁴ Köszegi & Rabin (2006)

Varying Time Preference

Varying Dissaving Aversion

--- Data --- Model

